
International Journal o f  Theoretical Physics, Vot. 15, No. 6 (1976), pp. 393-409 

The Interaction of a Quantum Mechanical 
Oscillator with Gravitational Radiation 

N. GR~FE and H. DEHNEN 

Fachbereich Physik der Universitdt Konstanz, 775 Konstanz, Germany 

Received: 25 March 1975 

Abstract 

Within the framework of the lineafized field equations of gravitation, the interaction 
operators between a quantum mechanical system and an external gravitational field are 
derived from the general-covariant Klein-Gordon and Dirac equation. In the case of 
linearly polarized plane gravitational waves the transition probabilities for absorption 
and induced and spontaneous emission of gravitational radiation by a quantum 
mechanical harmonic oscillator are calculated with the help of the time-dependent 
perturbation method. The results coincide with the classical ones according to the 
correspondence principle. 

1. Introduction 

Most previous investigations of the interaction of gravitational waves with 
matter have been performed within the framework of classical mechanics 
(cf., e.g., Weber, 1960; Frehland, 1971; Papapetrou, 1972). On the other 
hand, it is to be expected that especially at low temperatures quantum 
mechanical effects play a role in the excitation of a material system by 
external gravitational waves. Therefore in this work we will discuss the 
interaction of gravitational waves with a quantum mechanical system. 
Certainly for high excitation states the results should correspond to the 
classical ones asymptotically, so that these get a further foundation by the 
following investigation also. The gravitational waves are treated within the 
linearized field equations of Einstein's theory of gravitation; as quantum 
mechanical system we choose an ideal harmonic oscillator, the internal 
potential of which will not be modified by the external gravitational fields. 

At first the interaction operator between a quantum mechanical system 
and a linearized gravitational field will be derived from the general-covariant 
Klein-Gordon and Dirac theories, respectively. Subsequently we go over to 
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the nonrelativistic Schrbdinger equation and calculate the excitation of an 
ideal linear harmonic oscillator by a plane linearly polarized gravitational 
wave with the use of the time-dependent perturbation method. This may be 
justified in view of the fact that the deviations of the metric from that of 
the fiat space-time will be considered as small. 

In this way the transition probabilities for absorption and induced 
emission of gravitational radiation by an oscillator are obtained including 
the selection rules. From these the transition probabilities for spontaneous 
emission of gravitational radiation can be deduced by a consideration 
analogous to that of Einstein for the electromagnetic case. We find that the 
transition probabilities are determined by the matrix elements of the mass- 
quadrupote operator of  the oscillator and that the selection rule for the 
quantum number n is given by An = -+2 corresponding to the quadrupole 
interaction of the gravitational radiation. According to this the total gravita- 
tional radiation energy absorbed by an oscillator with time will increase 
linearly with the quantum number n. Thus a highly excited oscillator seems 
to be more appropriate for detection of (in general weak) gravitational 
radiation than oscillators in the ground and the lower excited states. 

2. Interaction Operator According to the Klein-Gordon Theory 

We start from the general-covariant Klein-Gordon equation (cf., e.g., 
Schmutzer, 1968), which takes in case of the signature + 2 for the metric of 
space-time the form I 

~lu Ilu - 2i(e/hc)Au ~*lu - i(e/hc) Au  I~u xp - (e/he)2Au Auxp - (mc/h)  2q! = 0 
(2.1) 

Here A u is the electromagnetic four-potential, to which the particle described 
by the wave function q, is exposed (m is the rest mass and e is the charge of 
the particle). With the use of the Lorentz convention 

A~tl,z = 0 (2.1a) 

Equation (2.1) simplifies to 

(guvxPt,z)l v + gU;V~vg'I }. - 2i(e/hc)g uvA u ~l v -- (e/hc)2 Au  Au ~I' 

- (me/h)2x~ = 0 (2.2) 

where the covariant derivative is written out. Insertion of the definition of 
the Christoffet symbols ~ua and execution of the derivative of the first term 
yields 

gUV~lu Iv + (~gm *u - gag Iv)gV°g#axPlx - 2i(e/hc)gUVAu ~tv 

- (e/hc)2gUVAuAv~P - ( m c / h ) 2 x I  * = 0 (2.3) 

1 II u signifies the covariant and Iv the ordinary partial derivative with respect to the 
coordinate x v. 
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Furthermore we use the metric of space-time in linear approximation 
with respect to the flat one2: 

lhuv I ~ 1, 

g .v  = rl~z, + huv, gO~8 = ~Te~ + 7o~ 

r/~v ' r /~  = +t +1 
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(2.4) 

Lifting and lowering of tensor indices will be performed in the following by 
r /~  and %v, respectively. Then 

~;~ = - h  e~ (2.4a) 

is valid. Additionally we demand the de Donder condition given by 

hu~lc~ - ½h]~ = 0, (h = hc~ ~) (2.4b) 

According to (2.4b) in the linear approximation the second term in (2.3) 
vanishes and we obtain, with the use of (2.4) and (2.4a), 

7?uu~t.~v - hUVqqulv - 2i(e/hc)~TUVA~l v + 2i(e/hc)hUVA~z'I'jv 

-- (e/hc)2rlUVAuAv~ + (e/hc)2 h"~AuAvql  - (mc/h)2qf  = 0 
(2.s) 

With the magnetic vector potential A = (A a} and the electric potential energy 
V = - e A 4 ,  Eq. (2.5) can be written 

ArP--c~'3tZ ~ - -  2 ihc  - 2iptc2 0t ~c A 2 ~ +  ql 

- qs + G = 0 ( 2 . 6 )  

where the abbreviation 

G = -hUU~l~ Iv + 2i(e/hc)hUVAuqqv + (e/hc)2hUVAuAv ~p (2.6a) 

represents the deviation of Eq. (2.6) from the Klein-Gordon equation in 
flat space-time in consequence of the interaction with the gravitational field. 
Splitting the terms of (2.6a) in view of the derivatives with respect to space 
and to time we find 

G = -habgtla tb -- 2ha4'yttla 14 - -  h44"If14 t4 + 2i(e/hc)huaAuq~ta 

+ 2i(e/hc)hU4Aug!l 4 + (e/hc)2hUVAuAv ~ (2.6b) 

wherein Latin indices, as in the following, run from 1 to 3. The relation 
(2.6b) represents the interaction operator with the gravitational field applied 
to the wave function qz in the framework of the Klein-Gordon theory. 

2 We choose the coordinate X 4 = eL 
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3. Transition to the SchrOdinger Theory 

For calculation of the transition probabilities in the case of excitation by 
gravitational waves we restrict ourselves to the nonrelativistic quantum 
theory. The nonrelativistic limit of Eq. (2.6) will be obtained by neglecting 
the terms proportional to negative powers of the velocity of light. Further- 
more, it is to be taken into account that the energy in the relativistic theory 
is greater than in the nonrelativistic one by the amount of the rest energy 
me2; therefore we choose the usual relation between the relativistic wave 
function ~I, and the Schr6dinger wave function do: 

,Is(x u) = e-i(mc'/~)tdo(xU) (3.1) 

Herewith we get from Eqs. (2.6) and (2.6b) at first: 

AdO+ 2i ~ adO 2 m VdO - 2i e a2dO V 2 adO 
at h 2 ~c A grad dO c2at z 2i h at 

+ ~ dO+ - -  ,, * ~ , - ~ .  -<~-h~ 'dOt~ ib+zz~-n  --at 

em 2ha4 a e a a2dO + 2 ~T  h#4Au do - ~ t  dola + 2i-~c c hu AudOla - h 4 4  - -  cZat 2 

+ 2i h~4Au - ~  + hcc h"VAuAvdo = 0 (3.2) 

Neglecting in (3.2) all terms up to the explicit order of c -2 we obtain the 
generalized Schr6dinger equation: 

h 2 Off) e~ 
--2m Ado + ih ~ t  -- Vdo - i --me A grad do + ½mc2h44do + iheha4dola 

I~2 ~ t  hz 
a 

--½ --m habdolalb + ihh44 + ehla4A#do- me ha4 ~t dola 

eh a 
+ i - -  h u AudOla = 0 (3.3) 

mc 

where all the terms containing components of huv result from the interaction 
with the gravitational field. It is of interest that the fifth term corresponds 
to the third one and the sixth term to the fourth one describing the usual 
interaction with the electromagnetic and the "gravitational" four-vector 
potential, respectively, whereas the remaining terms of the gravitational 
interaction originate from the tensofial character of the gravitational field 
and consequently do not possess an electromagnetic analogy. In the follow- 
ing we specify the gravitational interaction operator for several gravitational 
fields. 
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3.1. Interaction Operator for  Stationary and Static Gravitational FieMs 

The stationary gravitational field is characterized (choosing suitable co- 
ordinates) by 

huvi4 = O, huv = O(c -2) (3.4) 

Herewith Eq. (3.3) takes the form, neglecting all the terms proportional to 
c -2 and smaller, 

h 2 ~b  eh 
- -  Aib + t,'h ~ t  - V~b - i - -  A grad (b + ½mc2h44OP + ihcha4cbia = 0 
2m me (3.5) 

Accordingly in stationary fields the electromagnetic and gravitational inter- 
action corresponds exactly to one another. 

In the static Newtonian approximation of  gravitational fields the following 
is valid: 

= h22 = h33 = h44 = - 2  ~2, hut' = 0 otherwise hll  (3.6) 

where q / is  the (negative) Newtonian gravitational potential. With (3.6) Eq. 
(3.5) results in the absence of  magnetic fields (A = 0) in 

(//2/2m) 2xcb - ( V +  maR) (b = - i h  Ocb/Ot (3.7) 

which is exactly the expected form of  the time-dependent SchrOdi~ger 
equation in the case o f  static Newtonian gravitational fields. 3 

3.2. Interaction Operator for  Gravitational Wave Fields 

In the case of  linearized plane gravitational waves the metric takes the 
general form 

hll(U) = -h22(u)  4 = O, hl2(U ) 4= 0, huv = 0 otherwise; u = t -  x3/c 
(3.8) 

if the wave propagates in the direction of  the x 3 coordinate. A corresponding 
representation o f  huv is valid, if the propagation direction is determined by 
the x I or x 2 coordinate. Then the Schr6dinger equation (3.3) simplifies to 

h 2 eh h 2 eh Orb 
- -  Aq~ - Vc) - i - -  A grad q~ - haodola + i - -  habAbqOla = --ih - -  
2m mc ~m Ib mc Ot 

(3.9) 
Accordingly in the absence of  magnetic fields (A = 0) the interaction operator 
with gravitational waves is given by 

h 2 ha b 0 0 (3.10) 
W = ~-m Ox - ~  3x ---g 

3 It may be of interest, that even in the case of purely gravitational interaction (V = 0) 
the mass of the particle does not fall out in spite of the validity of the equivalence 
principle, Therefore the gravi-quantum-mechanical effects depend on the mass of the 
considered particles in general. 
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and the Schr6dinger equation reads 

h 2  h 2 ~d~ 
- -  Adp -- Vq~ - ~m habd~la Ib = --l~t 
2m Ot 

(3.11) 

4. Interaction Operator According to the Dirae Theory 

Subsequently we will show that in case of  gravitational waves the inter- 
action operator (3.10) follows also from the covariant Dirac equation in the 
nonrelativistic limit. We start with the covariant Dirac equation (cf., e.g., 
Schmutzer, 1968; Nowotny, 1972): 

ya [qzllu _ i(e/he)Auqz] _ (me/h)q~ = 0 (4.1) 

wherein 

~11u = "I~I u - Pug~ (4.1a) 

is the covariant spinor derivative with the spinorial connection coefficients 

P u = ~ h(p) u II u hx(O)@Tv (4.1b) 

defined by the use of  the orthonormal tetrad field hu (p ) .  4 The generalized 
Dirac matrices ~,u satisfying the relation 7u7 u + 7v7 u = 2g ~v are given by 

,?~ = hU(o)7 (o) (4. Ic) 

where @o) are Dirac's standard matrices. 
Restricting ourselves to linearized gravitational plane waves propagating 

in the direction of  the x 3 coordinate we take with respect to the metric 
(3.8) the following tetrad field: 

1 h 1 ho )  u = ( l  +~ 11,~h12,0,0);  

h(2)u = (½h'12, 1 - ½h11, O, 0); 

h(3)g = (0,  0, 1, 0);  

h(4)u = (0,  0, 0, - 1 ) ;  

- 'Ih u ,  -7h12, O, O) ho)U = (1 I 1 

~h 1 h(2) ~u = ( - - ~  12, 1 +Thla,  0, 0) 

h(3) u = (0, 0, 1, t3) (4.2) 

h(4) u = (0,  0, 0, 1) 

Herewith we get from (4. lb) with the use of  (4. lc) and (3.8) by a simple 
but long calculation the result 

I" u "-= 0 (4.3) 

Consequently Eq. (4.1) takes with respect to (4. la), (4.1 c), and (4.2) the 
following form: 

7(a)~la .- ½habT(b)~ta -- 3,(4)'.pt4 -- i (e/hc)T(a)Aa ~ + i (e /2he)hab@b)Aa gt 

+ i ( e / h c ) 7 ( 4 ) A 4 *  - (rnc/h)~g = 0 (4.4) 

4 The index within the bracket means the tetrad index. The orthonormal tetrad field 
hu(o) satisfies the completeness relations hu(x)hg(p) = r~(xp), hu(p)hv(P) = guy- 
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wherein the spacelike and timelike terms are already separated. Neglecting 
magnetic fields (A a = 0) we get from (4.4), after multiplication with ichT(4) 
from the left-hand side, 

~apacqt -- ½ChabOlbpa~ + V ~  + mc2figg - i t lS~/~t = 0 (4.5) 

with the abbreviations 

o~a = ,,/(4)~/(a) 

= iT (4) (4 .5a)  

Pa = - i h  a/Ox ~ 

and with V = -eA4 as electric potential energy. Equation (4.5) represents the 
special-relativistic form of the Dirac equation expanded by the second term 
on the left-hand side, which describes the interaction of the gravitational 
wave with the spinor field qL 

For the transition to the nonrelativistic theory we set in analogy to (3.1) 

~(X u) = e-i(me' /lOt ~(x  ~*) (4.6) 

Herewith Eq. (4.5) takes the form 

~apac~P -- ½Chab~bPa ~ + VdO + mc2fi~ - ih O~/at - mc2~ = 0 (4.7) 

With the usual ansatz 

~(x  u) = [ ¢b(x•) ] (4.8a) 
\x(x")] 

we obtain from (4.7) using the representation 

(: o{) = 

(o a Pauli matrices) the following two second-rank spinor equations: 

oaPacX + Veb = ih 3qs/at (4.9a) 

oapacO) + ( V -  2mc2)X = 17~ aX/Ot (4.9b) 

Here 

Pa = (S a b - ½ hab)Pb (4.9C) 

is the generalized momentum operator containing the interaction with the 
gravitational wave. In the nonrelativistic limit ( 1 V I ~ me 2, I z~ OX/O t l 4g mc2I X t) 
Eq, (4.9b) gives 

X = (aapa/2mc) q:" (4.10) 
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and herewith Eq. (4.9a) results in: 

aa~raPaPh q5 + V~ = tT~ ~cblat 
2m 

With the relation 

(4.11) 

aao b = T ab + icabC oc (4.12) 

(e abe is the permutation symbol) we get from (4.11) 

(1/2m)(Pafa + iea~Cocfafb)O# + Vcb = ih OcblOt (4.13) 

where in the linear approximation with respect to the metric (3.8) and the 
definition of  Pa according to (4.9c) and (4.5a) 

eabC ocPaPb = - -  02 hl  - -  + hi  
c Ox 1 

- - c O 1  ~ h  2 3x 1 \ o t h 2  ~ x  2 (4.14a) 

and 

PaP a = papa - habpaPb (4.14b) 

Evidently, the terms (4.14a) are proportional to c -1 in contrast to the terms 
(4.14b) and must therefore be neglected in the nonrelativistic limit of Eq. 
(4.13). Herewith Eq. (4.13) goes over into the generalized Schr6dinger equation 
[using the definition ofpa according to (4.5)]: 

h2 O~_~ (4.15) h~--~ Aib - V~  - 2---m habdAla lb = - i h  Ot 

This result is identical with Eq. (3.11). Thus also according to the Einstein- 
Dirac theory the interaction operator of a quantum mechanical system with 
a gravitational wave is in the nonrelativistic limit defined by 

h 2 ha b O 0 (4.16) 
W = 2--m- O x --h" 3x --~ 

in agreement with Eq. (3.10). 

5. Excitation o f  a Linear ltarmonic Oscillator by Gravitational Waves 

Now the excitation of a linear harmonic quantum mechanical oscillator 
through a gravitational wave will be calculated by the usual time-dependent 
perturbation method. Hereby we regard the gravitational potentials huv as 
small perturbations of the fiat space-time, in which the harmonic oscillator 



QUANTUM OSCILLATOR AND GRAVITATIONAL RADIATION 401 

possesses well defined orthonormal eigenstates 

d291c = @k (X a) e - iEk t / h  (5. la) 

with the energy eigenvalues E k satisfying the undisturbed Schr6dinger equation 

(~212m)Adbk - Vqb~ = -t~t 3cbkl3t (5. lb)  

The perturbation of  the oscillator by the gravitational wave will be taken into 
account by expanding the perturbed wave function Co with respect to q5 k 
according to 

q, = Y ak( t )% (5.2) 
k 

and by solving the perturbed Schr6dinger equation (3.11) or (4. t 5) with tile 
use of  (5.2). The potential V of the oscillator shall not be influenced by the 
gravitational perturbation (ideal oscillator). 

Thus the insertion of (5.2) into (3.11) or (4.15) yields, using the Eqs. (5.1) 
and the orthonormality of  the eigenfunctions q)k, 

l~ 3ak ei(Ek-ez )t/~ (5.3) -57 = E wkla~ l 

wherein the matrix elements [cf. (4.16)] 

wk; = f w~w~ol d3x  ~o~chab~pl I all) d3x  (5.3a) 

contain the interaction with the gravitational wave. The physical meaning of 
I ak( t )  12 is the probability for finding the perturbed oscillator in the state 
I k)  at the time t. For solving Eq. (5.3) we use an iteration method starting 
from the initial state, that the oscillator is at the time t = 0 in the state I n ) 
[at(t = 0) = 6ln ] . Herewith we get from (5.3) by a time integration in the 

f irst  iteration step 
t 

akn (t)  = - Wk~(t ')  e i(ek - en) t ' / ,  dt '  (5.4) 

0 

to which we wilI restrict ourselves in the following. Then the transition 
probability from the state i n ) into the state I k )  is given by 

(1) . .  
W ~ k  = ( l / t )  l ak,, tt)12 (5.5) 

5.1. Transition Probabilities 

In view of  the matrix elements (5.3a) of  the interaction operator W and 
with respect to the wave metric (3.8) the linear oscillator will be excited only 
if its linear extension has a component  orthogonal to the direction of  the 
wave propagation, which we have chosen as the direction of  the x 3 co- 
ordinate. Therefore the oscillator shall lie in the x ~, x 2 plane at x 3 = 0. 
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Figure 1-Wave coordinate system X 1 = X ,  X 2 = y,  x 3 = z, and oscillator coordinate 
system x 1' = x' ,  x 2' = y ' ,  x 3' = z'. The wave propagates along the z axis. The oscillator 
lies on the x'  axis at the origin. 

The coordinate in the direction of the oscillator may be signified with 
x 1' = x',  whereby the angle between the x v and the x 1 axis is called ¢, see 
Fig. 1. Furthermore, we restrict ourselves to linearly polarized gravitational 
radiation, consisting of a superposition of compactly neighboring mono- 
chromatic components, which is possible in the linear approximation of 
Einstein's theory. Specifying (3.8) in this sense we get for the wave metric 
at the position of the oscillator (x 3 = 0) 

hab = ~ b  ~ 1 A j ( e - i O 3 j t - i ~ j  + e iWj t+i~j )  

; (5.6) 
E ll  = - - E  22 = l ,  E ab = 0 o t h e r w i s e  

where A / r e p r e s e n t s  the amplitude and ~i the (arbitrary) phase of the mono- 
chromatic wave with the frequency co/. Accordingly the angle ¢ (Fig. 1) 
means the angle between the polarization of the gravitational wave described 
by the trace free tensor E ab and the direction of the oscillator, s 

For calculation of the matrix elements (5.3a) and the expansion coefficients 
(5.4) it is suitable to use the coordinate x 1' = x'  of the oscillator as independent 
variable. Then in view of (5.3a) only the knowledge of h x' 1' is necessary 
because the eigenfunctions ¢l of the undisturbed linear oscillator are dependent 
on the variable x' alone. From (5.6) we obtain immediately at the position of 
the oscillator 

h 1'1' = h 11 cos 2~p = ½ cos 2~p ~ A j ( e - i W / t -  i~j + eiW]t+ic~]) 
/ 

(5.6a) 

s The linear dimension of the oscillator shall be considered small against the wavelength 
of  the radiation. 
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and Eq. (5.4) reads, in view of  (5.3a) 

(1) ih 3 2 
(t) = - 4~n cos 2~0 ] ¢~ 3x,--- 5 ~n dx' a k n  

t 

x ~. A i f [ei(CJkn - coj)f--i~ i + ei(Vok~ + ~]) i+  i~j] dr '  (5.7) 
! 0 

with the abbreviation 

cok. = (Ek - En)/h (5.7a) 

At first we perform the time integration in (5.7) and obtain 

- -  f 32 (1) h , 
akn (t) = -- 4m cos 29 ~k ~ ~,~ dx' 

I Aie-i°7 Aieiai } x ~ [ei(C°kn-W] ) t -  1] + [ei(C°kn+VO] ) t -  1] 
• [coRn -- coI cokn + coj I 

(5.8) 

The first term of  the sum contributes a large amount only in case of  
coj = cokn = (Ek - En)/h and describes the absorption process, through 
which the oscillator goes over from the energy state E n into the energy state 
Ek > En. On the other hand the second term of  the sum becomes very large 
in case of  co i = -cokn = (En - Ek)/h and represents the induced emission 
process, through which the oscillator goes over from the energy state En 
into the energy state Ek < En. Because of the symmetry of  the expressions 
for both  processes we can for their cNculation restrict ourselves to the first 
one. Then we obtain for the transition probability of  the absorption accord- 
ing to (5.5) and (5.8): 

h 2 ] 2 
Wn-+k 16m2tCOS22~o f * 3 2 

x y A ~ l e - i ( ~ ]  - ~l) [ei(Ookn - co])t _ 1] [e - i (wkn - °°l)t -- 1] 
" ( ( - O k .  "-" C O ] ) ( c o R n  - -  c o l )  

(5.9) 

In this double sum only the terms with coj = co t -- cokn, that means the terms 
j = l, contribute the largest amounts, so that (5.9) can be written in good 
approximation 

4m 2----t h2 ] 0--~ ~n 02 ]2 Wn_+,; = cos 2 2~o f ~o~ dx' 

sin z ½(cokn -- CO/) t (5.10) 
IAil --(co . - co:)  X 

] 
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Subsequently for calculation of the sum in (5.10) we substitute it by an 
integral according to: 

~ o  

sin 2 { ( ~ k n  - coot  _~ f tA(~o) 2 sin2 ~(c~kn - ~ ) t  
J JAIl (COkn - a~J )2~ o - ( - ~ g n Z ~  d~ (5.11) 

wherein IA(w)[ s means the spectral intensity of the gravitational wave, [cL 
Eq. (5.18)]. The integrand of (5.11) possesses a high maximum at co = COkn 
the neighborhood of which contributes large amounts to the integral only, 
so that under the condition of slow variability of !A(w) l 2 in the range of this 
maximum the integral (5.11) can be estimated as follows: 

[A(co)[2 sin2 ½(¢Okn - cO)tdw 

0 (~k~ - ~ ) 2  
o o  

I sin-~2 ½ (COkn ~ w) t rr 
~[A(~kn)12 j  (COkn _ 6o)2 dw=~t[A(cokn)[  2 (5.12) 

o 

Herewith Eq. (5.10) takes the form 
0 2 

7rh2 f ~ ~x '2 ~'~ Wn~k = 8m---T c os2 2~ IA(cokn) [21 - -  dx' [2 (5.13) 

The same expression will be found taking into account the second term of 
the sum in (5.8). Therefore Wn-~ k, Eq. (5.13), is the transition probability 
firstly for absorption of gravitational waves by an oscillator in the case of 
Ek > En and secondly for induced emission of gravitational waves in the 
case o f E  k < E  n. 

Furthermore the transition probabilities for the absorption n -+ k and the 
induced emission of gravitational waves k ~ n are equal as can be shown by 
a transcription of the matrix element in (5.13). Starting from the undisturbed 
time-independent Schr6dinger equation of the linear harmonic oscillator [cf. 
Eq. (5.1)] 

O 2 2 m ( m  2) 
Ox,2~n + ~ -  En--~COo2X ' Cn=O (5.14) 

wherein COo is the eigenfrequency of the oscillator, we obtain with the help 
of the orthogonality of the eigenfunctions cn 

¢~C ~x,2~n dx '= ~kx ~On dx , k - - / = n  (5.14a) 

Using the mass-quadrupole tensor of the oscillator 

Qa' b' = ½m(3xa'X# - r'2rla ' b') (5.14b) 
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we find from (5.14a) the relation (k 4= n) 

~2 mc,~o 2 ~ • 
f ~ Ox,--~ ~, d x ' -  .h2 j ~k Ql' l'pn dx' (5.15) 

and herewith Eq. (5.13) results in 

_ ~ 0 ~ ) 0  4 
Wn-, k - - ~  c os2 2~p I A(cokn ) {2 I f qO~ Qf l'~On dx ~ {2 (5.16) 

Evidently, the square of the matrix element in (5.16) is invariant against 
changing k and n, so that the transition probabilities for absorption n -+ k 
and induced emission k -~ n are equal: 

Wn~ k = Wk__+ n (5.16a) 

Moreovel; the transition probabilities Wn=k are determined by the product 
between the square of the matrix element of the mass-quadrupote of the 
oscillator and the polarization of the gravitational wave expressed by the 
angle ~. Accordingly Eq. (5.16) can be written with respect to (5.6) and 
(5.14b) in the general form 

_rrc°o 4 A(cokn)121Eab ( j * Wn=k - 1 - - ~ l  ~k Qab~n d 3 x l  2 (5.17) 

where the undashed primordial coordinates are used (see Fig. 1). Of course 
the transition to any mher coordinates is possible because of the scalar 
character of (5. t7). 

On the other hand we note that the square of the spectral amplitude of 
the gravitational wave in (5.13), (5. i6), and (5.17) can be expressed by the 
spectral energy density of the radiation. One finds with the use of the 
Landau-Lifshitz energy pseudotensor for the metric (5.6) as mean spectral 
energy density 

p(cokn) = (co~nc2/327rf) I A(C~kn) 12 (5.18) 

( f is  Newton's gravitational constant). Similarly to the electromagnetic case 
Einstein's transition probabilities B ~ e  for absorption and induced emission 
of gravitational waves can be introduced according to 

14/n,~k = ,OBn~ k (5.19) 

where, with respect to (5.17) and (5.18) 

16rr 2 ~o4f. [Eaa . 
Bn~lc = f ~k Qab~n d3x L 2 (5.19a) 9 h2 ~ ' ~  c2 

5.2. Selection Rules 

For determination of the selection rules we calculate the matrix elements 
(5.15), wherein the eigenfunctions ~n of the oscillator are given by the well- 
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known relations 

with 

N. G R A F E  A N D  H.  D E H N E N  

m60o] TM v~(~) (5.20) 
~ n = \ ~ - - ~ - j  (2nn[)l/2 

2 2 
Vn(~ ) = e-  ~ / Hn(~), ~ = x ' ~  (5.20a) 

( H  n are Hermite polynomials). For the functions Vn(~) there holds the 
recursion formula 

0 2 
O~ 2 v n = ¼Vn+ 2 - (n + ½ ) Vn + n(n - 1) v n -  2 (5.21a) 

and the relation of  orthogonality 
+oo 

f Vm(~) Vn(~) d~ (5.21b) 2nn! "lr l/ 2 (~ rn n 

Herewith the matrix elements (5.15) take the form 

~ 0 2 _ ,  .,600 ~)-.2 °2 

( [ ( n  + l)(n + 2)] a/2 for k = n + 2 
/7760.0 0 ! 

= × 4 ( - 2 ) ( n  + ½) for k = n (5.22) 
2-h / 

~[0 n ( n -  1)] I/2 otherwise f o r k =  n -  2 

Accordingly for absorption and induced emission of  gravitational waves by an 
oscillator there exists the selection rule 

~xn = _+ 2 (5.23) 

Therefore it follows from the energy eigenvalues E n = h60o(n + ½) for the 
absorbed or emitted frequency COkn according to (5.7a): 

I COkn I = 2600 (5.24) 

With the relations (5.22) and (5.24) the transition probabilities for 
absorption and induced emission of  gravitational waves by an oscillator can be 
written using (5.13) or (5.16) [cf. (5.15) and (5.16a]): 

Wn,~n+ 2 = (rr/32) 6002 cos 2 2~o 1A(260o)12(n + 1)(n + 2) (5.25) 

The absorbed or emitted energy per second is given after multiplication with 
2hco o by 

Ln=n+ 2 = Qr/t6) h60o 3 cos 2 2~ lA(260o )1 2 (n +  1)(n + 2) (5.26) 

Evidently for n >> 1 the power Ln~n+ 2 of the oscillator increases quadratically 
with the quantum number n. 
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5.3. E f f ec t i ve  Absorp t ion  Power  o f  Oscillators 

The last result suggests, that the absorption power of  oscillators increases 
very rapidly for higher excitation states, ttowever, it must be taken into 
account that not  only do oscillators in the state I n ) absorb energy going 
over into the state In + 2), but also energy will be emitted by the oscillators 
through transition into the state [ n - 2 ). Therefore the ef fec t ive  absorption 
power o f  an oscillator in the state B n ) is given by (compare van Vleck, 1924) 

L n = 2hOOo(Wn-+n+ 2 - Wn-+n_2)  (5.27) 

Insertion of  (5.25) results in (with respect to (5.18) and (5.24)) 

Ln = -~rrhoo03 cos 2 250 IA(2cOo)t 2 01 + ½) (5.28) 

= 2rr z fT~oo o cos 2 2~(n + ½) p(2¢Oo)/C 2 

Accordingly the ef fec t ive  absorption power o f  gravitational waves by 
oscillators increases linearly with the quantum number n. Thus oscillators 
in highly excited states seem to be more appropriate for detection of  gravita- 
tional waves than oscillators in the ground state. 

It should be pointed out that, in contrast to Eq. (5.26), the result (5.28) 
allows the transition to the classical theory in case of  n >> 1, taking into con- 
sideration that then, as is well known, 

I = ~ m  (5.29) 

represents the amplitude of  the classical linear oscillator with the energy E n. 
Thus one finds from (5.28) in the classical limit the following effective 
absorption power for oscillators: 

L = ~Trw04 cos 2 2¢ [A(2co0)12 rnl z (5.30) 

= 7r 2 foo02 cos 2 2~0 ml2p(2OOo)/C 2 

in accordance with the classical result of  Misner (et al.) (1973), whereby 
ml  2 is an immediate measure for the mass-quadmpole moment of  the 
oscillator.6'7 

6. Spontaneous  Emiss ion o f  Gravitational Radiat ion 

With the knowledge of  the transition probabilities for absorption and 
induced emission it is possible to calculate the transition probabilities of  the 
spontaneous emission of  gravitational radiation A n-~k using the connection 

A n  -, ~: = (hc~3n/87r3 c 3) Bn -+ k (6. I)  

6 It should be remarked, that the classical results deduced in this paper are based on the 
correspondence reiation (5.29). 

7 The quotient L/pc according to (5.28) and (5.30) represents the effective cross section 
of the quantum mechanical and the classical oscillator respectively. 
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derived first by Einstein (1917) (see also, e.g., Blochinzew, 1972). Insertion 
of(5.19a) gives with respect to (5.24) 

A n ~  k - I°°knlSf tE ab f ~o~ OabqOn d 3 x l  2 ( 6 . 2 )  
72zrhc s 

which represents the probability for spontaneous emission of a graviton per 
second and solid angle element with a polarization described by the tensor 
E ab" 

Finally we calculate the total gravitational energy emitted by an oscillator 
using the dashed coordinates (oscillator system, see Fig. t). Then the quad- 
rupole tensor of the linear oscillator obeys the relation 

Q f f  : -2Q2,2, : -2Q3,3, , Qa'b'=O for a' 4: b' (6.3) 

and therefore in view of  Eq. (6.2) only the diagonal elements of the polariza- 
tion tensor E a'b' are to be determined for all radiation directions with the 
angle 0 against the oscillator axis (xl'-axis). One gets 

E f 1' = Ell sin 2 0 

E 2 ' 2 '  = E l l (  cOs2 X cos2 bg - s in2 X) (6 .4 )  

E 3'3' = Ell(sin 2 X cos2 O - c o s  2 X) 

wherein E tl = - E  22 = 1 are the only nonvanishing components of the 
polarization tensor in the coordinate system determined by the radiation 
direction (x 3 axis) and X is the rotational angle around the xl'-axis (see 
Fig. 2). With (6.3) and (6.4) we obtain from (6.2) by multiplication with 
h I C%n I the following mean energy loss radiated into the solid angle 
element d~2: 

(dE) - C°6nf sin4 O l f g~ Qf l,~n dx'12 df2 (6.5) 
d ~ n-~ k 32zrc s 

Z 

J X 

i/d / ',#q / 
\ \ I  !i 

\ i / /  
b / ~-~)(. 

Figure 2 - O r i e n t a t i o n  o f  the oscillator system (x', y" z') and the wave system (x,y, z). 
The z, x ' ,  and x axes lie in the same plane in view of the linear polarization of the 
gravitational wave emit ted by the oscillator (x' axis) in the direction of the z axis. 
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assuming that the wavelength of  the gravitational radiation ?~ = zrc/co o is 
large against the projection of  the linear dimension of  the oscillator given by 
(5.29) in the direction of  the wave. Integration over the total solid angle 
yields 

(dE) _ °°~nf f dx' ,2 
n ~ k  15e5 [ ~Ql ' l ' ~n  (6.6) 

This total mean energy loss per second corresponds exactly to the classical 
result regarding Eq. (5.24) for the emitted frequency (I Wgn t = 2600) and 
substituting the matrix element o f  the quadrupole operator by the mean 
quadrupole tensor itself (compare Rosen & Shamir, 1957; Landau & Lifshitz, 
1967). 

With the relation (5.15), the calculation of  the matrix elements (5.22), 
and the emitted frequency (5.24) we get from (6.6) immediately as energy 
loss by spontaneous emission from the state I n ) 

(dE)  - 1 6 f h 2 w ° 4 n ( n - 1 ) - ~  n 15cS (6.7) 

Accordingly the gravitational radiation energy emitted by an oscillator 
increases very rapidly for higher excited states (~n2). For the two states 
n = 0 and n = 1 there exists no emission of  gravitational radiation because of  
the selection rule &n = + 2 [compare (5.23)]. 

In the classical limit (n >> 1), it follows from (6.7) with the use of  (5.29) 

dE_ 4 fo.9o61 -2~2 (6.8) 
dt 15 e s ~rnt ) 

wherein ml 2 represents, as in Eq. (5.30), a measure for the mass-quadrupole 
moment of  the oscillator. This result for the mean energy loss coincides with 
that of  the classical theory in consequence of  the exact correspondence 
between the quantum mechanical formula (6.6) and the classical expression. 
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